Zur Seitenansicht

Titelaufnahme

Titel
Ultra-low-power digital filtering for insulated EMG sensing
AutorInnenRoland, Theresa ; Amsuess, Sebastian ; Russold, Michael F. ; Baumgartner, Werner
Enthalten in
Sensors, 19 (2019), 4, S. 959
ErschienenMDPI, 2019
VersionVersion of record
Anmerkung
Refereed/Peer-reviewed
SpracheEnglisch
DokumenttypAufsatz in einer Zeitschrift
Schlagwörter (EN)EMG signal processing / biosignal processing / insulated / capacitive EMG / low power filtering / myoelectric upper-limb prosthesis
ISSN1424-8220
URNurn:nbn:at:at-ubl:3-1599 
DOI10.3390/s19040959 
Zugriffsbeschränkung
 Das Werk ist gemäß den "Hinweisen für BenützerInnen" verfügbar
Links
Nachweis
Dateien
Klassifikation
Abstract

Myoelectric prostheses help amputees to regain independence and a higher quality of life. These prostheses are controlled by state-of-the-art electromyography sensors, which use a conductive connection to the skin and are therefore sensitive to sweat. They are applied with some pressure to ensure a conductive connection, which may result in pressure marks and can be problematic for patients with circulatory disorders, who constitute a major group of amputees. Here, we present ultra-low-power digital signal processing algorithms for an insulated EMG sensor which couples the EMG signal capacitively. These sensors require neither conductive connection to the skin nor electrolytic paste or skin preparation. Capacitive sensors allow straightforward application. However, they make a sophisticated signal amplification and noise suppression necessary. A low-cost sensor has been developed for real-time myoelectric prostheses control. The major hurdles in measuring the EMG are movement artifacts and external noise. We designed various digital filters to attenuate this noise. Optimal system setup and filter parameters for the trade-off between attenuation of this noise and sufficient EMG signal power for high signal quality were investigated. Additionally, an algorithm for movement artifact suppression, enabling robust application in real-world environments, is presented. The algorithms, which require minimal calculation resources and memory, are implemented on an ultra-low-power microcontroller.

Statistik
Das PDF-Dokument wurde 139 mal heruntergeladen.
Lizenz-/Rechtehinweis
Creative Commons Namensnennung 4.0 International Lizenz